Toplam Sayfa Görüntüleme Sayısı

25 Ocak 2015 Pazar

Çoklu Zeka Kuramı

Howard Gardner tarafından 1983 yılında  ortaya atılan çoklu zeka kuramı, neye benzetilebilir diye düşünüldüğünde akla gelebilecek en iyi örneklerden biri dengeli beslenme olabilir.
Tek yönlü beslenme nasıl ki belirli hastalıklara yol açıyor ve metabolizma üzerinde olumsuz etkiler oluşturuyorsa, tek yönlü zeka beslenmesi de zihin gelişimini potansiyel olarak sınırlıyor. 
 
Çoklu zeka kuramına göre insan beyni,
  • Sözel-dilsel,
  • Mantıksal-matematiksel,
  • Müziksel-ritmik,
  • Görsel-uzamsal,
  • Öze dönük- içsel,
  • Kişilerarası- sosyal,
  • Doğa ve bedensel-kinestetik  zeka alanlarını içermektedir.
 
Geleneksel eğitim bunlardan ilk ikisini, yani sayısal ve sözel olanı dikkate alır. Diğerleri okullarda gereken önemi görmez. İşte bu tek yönlü beslenmedir ve zekanın potansiyelini sınırlar. Biraz bile kuşkucu bir yaklaşım, bu eğitim sistemini kullanan bir idarenin, daha az düşünen bir nesil yaratmayı amaçladığını düşünebilir.     

Çoklu zeka kuramında anahtar kavram "çoğul" kelimesidir. Çünkü zeka çok yönlüdür. Doğuştan genetik kalıtımla getirilen zeka geliştirilebilir, değiştirilebilir ve zeki olmak belli bir derecede öğrenilebilir. Gardner zekanın özelliklerini şöyle sıralamaktadır:


1. Her insan kendi zekasını arttırma ve geliştirme yeteneğine sahiptir.
 
2. Zeka sadece değişmekle kalmaz aynı zamanda başkalarına da öğretilebilir. 
 
3. Zeka insandaki beyin ve zihin sistemlerinin birbiriyle etkileşimi sonucu ortaya çıkan çok yönlü bir olgudur.
 
4. Zeka çok yönlülük göstermesine rağmen kendi içinde bir bütündür.
 
5. Her insan, çeşitli zeka alanlarının tümüne sahiptir.
 
6. Her insan, zeka alanlarından her birini beli bir düzeyde geliştirebilir. 
 
7. Çeşitli zeka alanları, genellikle bir arada belli bir uyum içinde çalışırlar.
Bir insanın her alanda zeki olabilmesinin bir çok yolu vardır. 

Çoklu zeka kuramı, zekaya ilişkin geleneksel anlayışların eksiklerini vurgulamakta ve yeni bir pencere sunmaktadır.  
 
Howard Gardner'in çoklu zeka kuramı ve bilimsel dayanaklarını anlattığı videoyu buradan izleyebilirsiniz.